The Origins of Graphical Causal Models

Here is an interesting bit of intellectual history. In his 2000 book “Causality”, Judea Pearl describes how he got to the initial idea that sparked the development of causal inference based on directed acyclic graphs. Continue reading The Origins of Graphical Causal Models

No Free Lunch in Causal Inference

Last week I was teaching about graphical models of causation at a summer school in Montenegro. You can find my slides and accompanying R code in the teaching section of this page. It was lots of fun and I got great feedback from students. After the workshop we had stimulating discussions about the usefulness of this new approach to causal inference in economics and business. I’d like to pick up one of those points here, as this is an argument I frequently hear when talking to people with a classical econometrics training. Continue reading No Free Lunch in Causal Inference

Causality for Policy Assessment and Impact Analysis

Here is a great introductory lecture into causal inference and the power of directed acyclic graphs / bayesian networks. It repeats a point I made earlier on this blog that big data alone, without a causal model (i.e., theory) to support it, is simply not sufficient for making causal claims. Continue reading Causality for Policy Assessment and Impact Analysis