Causal Data Science in Business

A while back I was posting about Facebook’s causal inference group and how causal data science tools slowly find their way from academia into business. Since then I came across many more examples of well-known companies investing in their causal inference (CI) capabilities: Microsoft released its DoWhy library for Python, providing CI tools based on Directed Acylic Graphs (DAGs); I recently met people from IBM Research interested in the topic; Zalando is constantly looking for people to join their CI/ML team; and Lufthansa, Uber, and Lyft have research units working on causal AI applications too. Continue reading Causal Data Science in Business

Beyond Curve Fitting

Last week I attended the AAAI spring symposium on “Beyond Curve Fitting: Causation, Counterfactuals, and Imagination-based AI”, held at Stanford University. Since Judea Pearl and Dana Mackenzie published “The Book of Why”, the topic of causal inference gains increasing momentum in the machine learning and artificial intelligence community. If we want to build truly intelligent machines, which are able to interact with us in a meaningful way, we have to teach them the concept of causality. Otherwise, our future robots will never be able to understand that forcing the rooster to crow at 3am in the morning won’t make the sun appear. Continue reading Beyond Curve Fitting

Microsoft Releases New Python Library for Causal Inference

A while ago I blogged about Facebook’s causal inference group. Now Microsoft has followed suit and released a Python library for graph-based methods of causal inference. Continue reading Microsoft Releases New Python Library for Causal Inference